God's algorithm distribution
Depth New Total
0 1 1
1 8 9
2 32 41
3 128 169
4 512 681
5 2048 2729
6 8176 10905
7 32400 43305
8 128608 171913
9 509927 681840
10 2021092 2702932
11 8003554 10706486
12 31678834 42385320
13 125307530 167692850
14 495157495 662850345
15 1953478687 2616329032
16 7682157029 10298486061
17 29984818955 40283305016
18 114831820323 155115125339
19 417957132495 573072257834
20 1325871801018 1898944058852
21 2934550836931 4833494895783
22 2736869164561 7570364060344
23 427540149248 7997904209592
24 1770867597 7999675077189
25 7595 7999675084784
26 16 7999675084800
27 0 7999675084800
Date: 2024-09-14 to 2024-09-22
Time: ~7 days 3 hours
Generators of all depth 25 positions
Depth 26 positions are listed below
God's algorithm distribution (QTM)
Depth New Total
0 1 1
1 4 5
2 12 17
3 32 49
4 88 137
5 240 377
6 656 1033
7 1792 2825
8 4896 7721
9 13376 21097
10 36504 57601
11 99528 157129
12 271359 428488
13 739584 1168072
14 2015884 3183956
15 5493494 8677450
16 14965234 23642684
17 40757056 64399740
18 110960833 175360573
19 301946732 477307305
20 821049717 1298357022
21 2230003682 3528360704
22 6044495440 9572856144
23 16321629020 25894485164
24 43746575372 69641060536
25 115506765437 185147825973
26 295645071578 480792897551
27 709214579066 1190007476617
28 1487087816072 2677095292689
29 2368788759019 5045884051708
30 2189306113522 7235190165230
31 726260727313 7961450892543
32 38159404443 7999610296986
33 64787090 7999675084076
34 724 7999675084800
35 0 7999675084800
Date: 2024-10-03 to 2024-10-07
Time: ~3 days 1 hour
Generators of all depth 34 positions
2018-03-05:
2^20 random scrambles solved optimally:
Depth Frequency
10 1
11 0
12 5
13 13
14 66
15 273
16 995
17 3940
18 14949
19 54581
20 173415
21 385091
22 358877
23 56148
24 222
3^7 pure corner twists:
Depth Frequency
0 1
16 198
17 330
18 98
19 424
20 174
21 320
22 274
23 242
24 110
25 0
26 16
Depth 26 positions:
U R U' R2' U R U2' R2' U2' R' U' R U' R2 U R' U2' R' U2' R' U R2' U R2 U2 R'
U R U2 R U' R' U2 R2 U2 R' U2 R2' U R2 U' R' U R2' U R' U' R2 U R2 U' R2
U R2 U2' R2 U' R2 U' R' U' R2' U R2' U2' R U' R2 U2' R2' U R2' U' R2' U R U2' R2
U R2 U R U2 R' U2 R U2 R' U' R U2' R U' R2 U' R2 U2' R U2 R' U2 R2 U' R'
U R U2 R2' U' R' U R' U' R' U' R2 U2' R' U2 R2 U2 R2 U R2' U' R' U2 R2 U' R2'
U R U2' R2 U R2 U2' R2 U' R2 U' R' U' R2' U R2' U2' R U' R2 U2' R2' U R2' U' R2'
U R U' R2 U2 R U2' R U' R2' U' R2' U' R U2 R' U R' U' R2' U2' R2' U R U2' R'
U R U R U2' R2 U R2' U2' R2' U2' R' U2 R U R2' U2' R U2 R' U' R2' U2 R U R'
U R U2 R' U2 R U2 R' U' R U2' R U' R2 U' R2 U2' R U2 R' U2 R2 U' R' U R2
U R U2 R U2' R U R' U R2 U' R2' U R2' U2 R U' R2 U2 R' U R2 U' R2 U R'
U R U R2 U' R2 U2 R' U R2' U2 R2 U' R2 U R2 U' R' U2 R2' U' R2' U2 R2' U R2'
U R U2' R2' U R2' U' R2 U2' R U2' R U' R2 U' R U R2' U' R2' U R2' U' R' U2' R'
U R U2 R' U2 R2 U' R U2' R2 U2 R' U2 R U2 R' U' R2 U2' R' U2' R2 U2' R U2' R
U R U R2' U R2' U2 R2' U' R2' U2 R' U' R2 U R2 U' R2 U2 R2' U R' U2 R2 U' R2
U R U R2' U2 R U2' R2' U2' R2' U' R2 U R U2' R2' U R2 U' R' U2' R2 U R U' R
U R U R U' R U R2 U2' R' U' R2 U R2' U2' R U R2 U' R2' U2' R2' U2' R U2 R2'